Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls

نویسندگان

چکیده

Abstract The key objective of the present research is to examine hybrid magnetohydrodynamics (MHD) nanofluid (Carbon-nanotubes and ferrous oxide–water) CNT – Fe 3 O 4 / H 2 flow into a horizontal parallel channel with thermal radiation through squeezing dilating porous walls. parting motion triggered by walls channel. fluid time-dependent laminar. asymmetric upper lower are distinct in temperature porous. With combination nanoparticles single multi-wall carbon nanotubes, principle exploited. By using similarity transformation, set partial differential equations (PDEs) this mathematical model, governed momentum energy equations, reduced corresponding ordinary (ODEs). A very simple numerical approach called Runge–Kutta system order four along shooting technique used achieve solutions for regulating ODEs. MATLAB computing software create velocity profile graphs various emerging parameters. At end manuscript, main conclusions summarized. Through different graphs, it observed that hybrid-nanofluid has more prominent enhancement than nanofluid. Further, single-wall nanotubes have dominated impact on nanotubes. From calculations, also noted MWCNT water an average 4.84% rate heat transfer SWCNT . On other hand, 8.27% Such study important coolant circulation, inter-body transportation, aerospace engineering, industrial cleaning procedures, etc.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method

In this work, we applied Chebychev spectral collocation method to analyze the unsteady two-dimensional flow of nanofluid in a porous channel through expanding or contracting walls with large injection or suction. The solutions are used to study the effects of various parameters on the flow of the nanofluid in the porous channel. From the analysis, It was established that increase in expansion r...

متن کامل

Heat Transfer Analysis of Nanofluid Flow with Porous Medium through Jeffery Hamel Diverging/Converging Channel

In this paper, flow and heat transfer of nanofluid through a converging or diverging channel with porous medium is investigated. The fluid constantly flows under the effect of magnetic field through the channel. The diverging/converging fluid motion is modeled using the momentum and energy equations. The influence of some parameters such as opening channel angle, Reynolds number and Darcy’s num...

متن کامل

Entropy generation analysis of MHD forced convective flow through a horizontal porous channel

Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...

متن کامل

On The Effect of Nanofluid Flow and Heat Transfer with Injection through an Expanding or Contracting Porous Channel

The studies of the behavior of fluid on the nano-level has shown to be an important means of influencing the characteristic of fluid must especially in the area of thermal conductivity. Giving relevance in numerous fields such as biomedicine, manufacturing, fuel cells and soon on. This article considers flow and heat transfer of viscous fluid conveying Gold nanoparticles through expanding or co...

متن کامل

Two-Dimensional Flow Analysis of Nanofluid through a Porous Channel with Suction/Injection at Slowly Expanding/Contracting Walls using Variation of Parameter Method

In this work, variation of parameter method is applied to study two-dimensional flow of nanofluid in a porous channel through slowly deforming walls with suction or injection. The results of the developed approximate analytical solution using the variation of parameter method is verified with the results of numerical solution using fourth-order Runge-Kutta method coupled with shooing techniques...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2021

ISSN: ['2045-2322']

DOI: https://doi.org/10.1038/s41598-021-91188-1